#### **GREENHOUSE GAS MITIGATION FOR AGRICULTURE: OPPORTUNITIES AND BARRIERS**

#### SØREN O. PETERSEN, AARHUS UNIVERSITY







SØREN O PETERSEN 20 MARCH 2024

PROFESSOR

#### Denmark: Arable and animal agriculture



→ Land use shaped by feed production

On-farm GHG emissions a part of land use





• How to manage agroecosystems with minimum environmental impact?

- Nutrient leaching
- Soil organic carbon loss
- GHG emissions

Synthetic N fertiliser



Regulations have enforced recycling of nitrogen in manure to reduce N surplus

Higher relative importance of livestock manure as source of nitrogen





• How to manage agroecosystems with minimum environmental impact?

- Nutrient leaching
- Soil organic carbon losses
- GHG emissions



Several regulations require farmers to introduce cover crops in rotations

Increasing amounts of nutrients in cover crop residues returned to soil



20 MARCH 2024 PROF

SØREN O. PETERSEN PROFESSOR

• How to manage agroecosystems with minimum environmental impact?

- Nutrient leaching
- Soil organic carbon losses
- GHG emissions



#### "Ny strategi skal understøtte fordobling af økologi"

Ministry of Food, Agriculture and Fisheries, 2023

#### Increasing the area dependent on organic N fertilisers only



20 MARCH 2024 PF

• How to manage agroecosystems with minimum environmental impact?

- Nutrient leaching
- Soil organic carbon losses
- GHG emissions

#### Do these trends in organic matter management contribute to GHG mitigation?





# Organic input and $N_2O$

- $\circ$  Carbon input in crop residues a better predictor of N\_2O than N input for crop rotations (Pugesgaard et al. 2017 )
- Denitrification the main source of N<sub>2</sub>O from crop residues at 40, 50 and 60% WFPS (Li et al. 2016)
- Higher N<sub>2</sub>O emissions from organic compared to synthetic N fertilisers (Petersen et al. 2023)



Ballabio et al., 2016

**Hypothesis** Manure and crop residues constitute organic hotspots which are the main source of  $N_2O$  emissions from agricultural soils in Northern Europe





# N<sub>2</sub>O emission factors, spring campaigns and annual





- o All crops present every year
- o Three randomised blocks







### Screening of synthetic and organic fertilisers



 $EF_{SN}$  (w. 95% CI, n = 16) × Activity data

 $EF_{Man N}(w.95\% CI, n = 44)$ × Activity data







# N<sub>2</sub>O emissions during spring 2020





# N<sub>2</sub>O emissions during spring 2021







## N<sub>2</sub>O from synthetic and organic N fertilisers

| EF, % (2020+2021) | Organic fertilisers |             |    | Syr  | Synthetic fertilisers |    |  |
|-------------------|---------------------|-------------|----|------|-----------------------|----|--|
|                   | Mean                | 95% C.I.    | n  | Mean | 95% C.I.              | п  |  |
| L1-L4 (country)   | 1.02                | 0.72 - 1.33 | 44 | 0.15 | -0.08 - 0.23          | 16 |  |

Petersen et al. 2023



Contents lists available at ScienceDirect

Agriculture, Ecosystems and Environment

journal homepage: www.elsevier.com/locate/agee

Higher  $N_2O$  emissions from organic compared to synthetic N fertilisers on sandy soils in a cool temperate climate

Søren O. Petersen<sup>a,\*</sup>, Leanne E.K. Peixoto<sup>a</sup>, Helle Sørensen<sup>b</sup>, Azeem Tariq<sup>c,1</sup>, Andreas Brændholt<sup>c</sup>, Line Vinther Hansen<sup>c</sup>, Diego Abalos<sup>a</sup>, Alice Thoft Christensen<sup>d</sup>, Cecilie Skov Nielsen<sup>d</sup>, Johannes W.M. Pullens<sup>a</sup>, Sander Bruun<sup>c</sup>, Lars Stoumann Jensen<sup>c</sup>, Jørgen E. Olesen<sup>a</sup> Consequences for
national inventory calculations
desk studies such as LCA

### Organic vs. conventional farming: Meta-analysis of LCA's



Are IPCC default emission factors reliable?





### Manure "hotspots" - a gradient environment



A 20-fold increase in nitrification potential within 2 weeks

Coupled nitrification-denitrification (and N<sub>2</sub>O emissions) over a wide range of soil conditions



80

Markfoged et al., 2011

20 MARCH 2024 SØREN O. PETERSEN PROFESSOR

Petersen et al., 1992

## Opportunity! Prevent nitrification around org. hotspots





# $\rightarrow$ Greater potential for N<sub>2</sub>O mitigation with manure compared to synthetic N





## Barrier? Side-effects of nitrification inhibitors

Significant effects on soil fauna and microorganisms of:

- $\circ~$  Location and soil type
- Fertiliser type (synthetic or organic)
- $\circ$  Crop
- Weather conditions
- o Tillage

Much <u>less</u> effect of nitrification inhibitors on soil biota compared to factors above, but accumulating over several years?

- Some NI measured in soil after 4 months
- Recovery of NI and metabolites influenced by rainfall





# N<sub>2</sub>O emission factors, spring campaigns and annual









Foulum (JB4)



AARHUS

UNIVERSITY

DEPARTMENT OF AGROECOLOGY



#### Vejen (JB1)

- Synthetic N fertiliser Organic N (liquid manure)
  - Grass-clover Cover crops

Highly variable, but not random!

Opportunity! Less N<sub>2</sub>O emission with plant cover



20 MARCH 2024

SØREN O. PETERSEN PROFESSOR

## Barrier? Termination of perennial crops, cover crops





AARHUS UNIVERSITY DEPARTMENT OF AGROECOLOGY

Taghizadeh-Toosi et al., 2022

#### Denmark: Arable and animal agriculture



→ Land use shaped by feed production

On-farm GHG emissions a part of land use





## Methane lost during storage dominate GHG emissions





#### Opportunity! Manure treatment and management

- Anaerobic digestion
- Low-dose acidification
- $\circ~$  Methane oxidation in crusts of tanks with a cover









a 🛈 🕄 🔤

Letter

#### pubs.acs.org/acsagscitech

#### Low-Dose Acidification as a Methane Mitigation Strategy for Manure Management

Chun Ma,\* Frederik R. Dalby, Anders Feilberg, Brian H. Jacobsen, and Søren O. Petersen

Cite This: https://doi.org/10.1021/acsagscitech.2c00034

Read Online





#### Methane oxidation in surface crusts

- $\circ$  Dynamic ventilation control
- o Flux measurement
- $_{\odot}~$  IRMS analysis of  $CH_4$





# $^{13}CH_4$ enrichment is evidence for $CH_4$ oxidation







#### Perspectives

- $\circ~$  Land use is part of farming systems that include on-farm activities
- Several trends promote recycling of nutrients to soil in organic form with a high N2O emission risk
- There are technical "fixes" to mitigate GHG emissions, but are they in conflict with agroecological principles?
- Is there an optimal path between sustainable intensification (land sparing?) and organic farming practices (land sharing?)
- Short-term vs. long-term mitigation targets



